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Why care about power system dynamics & control?

www.offthegridnews.com

1 increasing renewables & deregulation

2 growing demand & operation at capacity

⇒ increasing volatility & complexity,
decreasing robustness margins

Rapid technological and scientific advances:

1 re-instrumentation: sensors & actuators

2 complex & cyber-physical systems

⇒ cyber-coordination layer for smart grid

⇒ need to understand the complex network dynamics & control
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One system with many dynamics & control problems
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Abstract—The problem of defining and classifying power
system stability has been addressed by several previous CIGRE
and IEEE Task Force reports. These earlier efforts, however,
do not completely reflect current industry needs, experiences
and understanding. In particular, the definitions are not precise
and the classifications do not encompass all practical instability
scenarios.

This report developed by a Task Force, set up jointly by the
CIGRE Study Committee 38 and the IEEE Power System Dynamic
Performance Committee, addresses the issue of stability definition
and classification in power systems from a fundamental viewpoint
and closely examines the practical ramifications. The report aims
to define power system stability more precisely, provide a system-
atic basis for its classification, and discuss linkages to related issues
such as power system reliability and security.

Index Terms—Frequency stability, Lyapunov stability, oscilla-
tory stability, power system stability, small-signal stability, terms
and definitions, transient stability, voltage stability.

I. INTRODUCTION

POWER system stability hasbeen recognized as an important
problemfor securesystemoperation since the1920s [1], [2].

Many major blackouts caused by power system instability have
illustrated the importance of this phenomenon [3]. Historically,
transient instability has been the dominant stability problem on
most systems, and has been the focus of much of the industry’s
attention concerning system stability. As power systems have
evolved through continuing growth in interconnections, use of
new technologies and controls, and the increased operation in
highly stressed conditions, different forms of system instability
have emerged. For example, voltage stability, frequency stability
and interarea oscillations have become greater concerns than
in the past. This has created a need to review the definition and
classification of power system stability. A clear understanding
of different types of instability and how they are interrelated
is essential for the satisfactory design and operation of power
systems. As well, consistent use of terminology is required
for developing system design and operating criteria, standard
analytical tools, and study procedures.

The problem of defining and classifying power system sta-
bility is an old one, and there have been several previous reports
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on the subject by CIGRE and IEEE Task Forces [4]–[7]. These,
however, do not completely reflect current industry needs, ex-
periences, and understanding. In particular, definitions are not
precise and the classifications do not encompass all practical in-
stability scenarios.

This report is the result of long deliberations of the Task Force
set up jointly by the CIGRE Study Committee 38 and the IEEE
Power System Dynamic Performance Committee. Our objec-
tives are to:

• Define power system stability more precisely, inclusive of
all forms.

• Provide a systematic basis for classifying power system
stability, identifying and defining different categories, and
providing a broad picture of the phenomena.

• Discuss linkages to related issues such as power system
reliability and security.

Power system stability is similar to the stability of any
dynamic system, and has fundamental mathematical under-
pinnings. Precise definitions of stability can be found in the
literature dealing with the rigorous mathematical theory of
stability of dynamic systems. Our intent here is to provide a
physically motivated definition of power system stability which
in broad terms conforms to precise mathematical definitions.

The report is organized as follows. In Section II the def-
inition of Power System Stability is provided. A detailed
discussion and elaboration of the definition are presented.
The conformance of this definition with the system theoretic
definitions is established. Section III provides a detailed classi-
fication of power system stability. In Section IV of the report the
relationship between the concepts of power system reliability,
security, and stability is discussed. A description of how these
terms have been defined and used in practice is also provided.
Finally, in Section V definitions and concepts of stability from
mathematics and control theory are reviewed to provide back-
ground information concerning stability of dynamic systems in
general and to establish theoretical connections.

The analytical definitions presented in Section V constitute
a key aspect of the report. They provide the mathematical un-
derpinnings and bases for the definitions provided in the earlier
sections. These details are provided at the end of the report so
that interested readers can examine the finer points and assimi-
late the mathematical rigor.
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Fig. 1. Classification of power system stability.

- Small-disturbance rotor angle stability problems may
be either local or global in nature. Local problems
involve a small part of the power system, and are usu-
ally associated with rotor angle oscillations of a single
power plant against the rest of the power system. Such
oscillations are called local plant mode oscillations.
Stability (damping) of these oscillations depends on
the strength of the transmission system as seen by the
power plant, generator excitation control systems and
plant output [8].
- Global problems are caused by interactions among
large groups of generators and have widespread effects.
They involve oscillations of a group of generators in one
area swinging against a group of generators in another
area. Such oscillations are called interarea mode oscil-
lations. Their characteristics are very complex and sig-
nificantly differ from those of local plant mode oscilla-
tions. Load characteristics, in particular, have a major
effect on the stability of interarea modes [8].
- The time frame of interest in small-disturbance sta-
bility studies is on the order of 10 to 20 seconds fol-
lowing a disturbance.

• Large-disturbance rotor angle stability or transient sta-
bility, as it is commonly referred to, is concerned with the
ability of the power system to maintain synchronism when
subjected to a severe disturbance, such as a short circuit
on a transmission line. The resulting system response in-
volves large excursions of generator rotor angles and is
influenced by the nonlinear power-angle relationship.

- Transient stability depends on both the initial
operating state of the system and the severity of the dis-
turbance. Instability is usually in the form of aperiodic
angular separation due to insufficient synchronizing
torque, manifesting as first swing instability. However,
in large power systems, transient instability may not
always occur as first swing instability associated with

a single mode; it could be a result of superposition of
a slow interarea swing mode and a local-plant swing
mode causing a large excursion of rotor angle beyond
the first swing [8]. It could also be a result of nonlinear
effects affecting a single mode causing instability
beyond the first swing.
- The time frame of interest in transient stability studies
is usually 3 to 5 seconds following the disturbance. It
may extend to 10–20 seconds for very large systems
with dominant inter-area swings.

As identified in Fig. 1, small-disturbance rotor angle stability
as well as transient stability are categorized as short term
phenomena.

The term dynamic stability also appears in the literature as
a class of rotor angle stability. However, it has been used to
denote different phenomena by different authors. In the North
American literature, it has been used mostly to denote small-dis-
turbance stability in the presence of automatic controls (partic-
ularly, the generation excitation controls) as distinct from the
classical “steady-state stability” with no generator controls [7],
[8]. In the European literature, it has been used to denote tran-
sient stability. Since much confusion has resulted from the use
of the term dynamic stability, we recommend against its usage,
as did the previous IEEE and CIGRE Task Forces [6], [7].

B.2 Voltage Stability:

Voltage stability refers to the ability of a power system to main-
tain steady voltages at all buses in the system after being sub-
jected to a disturbance from a given initial operating condition.
It depends on the ability to maintain/restore equilibrium be-
tween load demand and load supply from the power system. In-
stability that may result occurs in the form of a progressive fall
or rise of voltages of some buses. A possible outcome of voltage
instability is loss of load in an area, or tripping of transmis-
sion lines and other elements by their protective systems leading
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We have to make a choice based on . . .
many aspects depending on spatial/temporal/state scales

what future speakers need and
what will be covered by others

what I actually know well

what is interesting from a
network perspective rather than
from device perspective

what is relevant for future
(smart) power grids with high
renewable penetration

what gives rise to fun
distributed control problems
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Introduction

Power Network Modeling

Feasibility, Security, & Stability

Power System Control Hierarchy

Power System Oscillations

Conclusions

my particular focus is on networks
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Disclaimers

start-off with “boring” modeling before we get to “sexy” topics

we will cover mostly basic material & some recent “cutting edge” work

we will focus on simple models and developing physical & math intuition

will give references to more complex models & more recent research

we will not go deeply into the math though everything is sound

want to convey intuition and give references to look up the details

notation is mostly “standard” (watch out for sign & p.u. conventions)

ask me for further reading about any topic

interrupt & correct me anytime
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Many references available . . . my personal look-up list
. . . to be complemented by references throughout the lecture
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Circuit Modeling: Network,
Loads, & Devices

AC circuits – graph-theoretic modeling

1 a circuit is a connected & undirected graph G = (V, E)

V = {1, . . . , n} are the nodes or buses

◦ buses are partitioned as V = {sources} ∪ {loads}
◦ the ground is sometimes explicitly modeled as node 0 or n + 1

E ⊂
{
{i , j} : i , j ∈ V

}
= V × V are the undirected edges or branches

◦ edges between distinct nodes {i , j} are the lines

◦ self-edges {i , i} (or edges to ground {i , 0}) are the shunts

8

8

8

8

8

1 2

3
0 V = {1, 2, 3}

E =
{
{1, 2}, {1, 3}, {2, 3}, {3, 3}

}
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AC circuits – the network admittance matrix

2 Y = [Yij ] ∈ Cn×n is the network admittance matrix with elements

Yij =

{ − 1
Zij

for off-diagonal elements i 6= j

1
Zi,shunt

+
∑

j 6=i
1
Zij

for diagonal elements i 6= j

◦ impedance = resistance + i · reactance: Zij = Rij + i · Xij

◦ admittance = conductance + i · susceptance: 1
Zij

= Gij + i · Bij

8

8

8

8

8

1 2

3
0

Y =




1
Z12

+ 1
Z13

− 1
Z12

− 1
Z13

− 1
Z12

1
Z12

+ 1
Z23

− 1
Z23

− 1
Z13

− 1
Z23

1
Z13

+ 1
Z23




︸ ︷︷ ︸
network Laplacian matrix

+




0
0

1
Z3,shunt




︸ ︷︷ ︸
diag(shunts)

Note quasi-stationary modeling: Z13 = iω∗L13 with nominal frequencyω∗
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AC circuits – basic variables

3 basic variables: voltages & currents

on nodes: potentials & current injections

on edges: voltages & current flows
Gij + i Bij

i j

4 quasi-stationary AC phasor coordinates for harmonic waveforms:

e.g., complex voltage V = E e i θ denotes v(t) = E cos (θ + ω∗t)

where V ∈ C, E ∈ R≥0, θ ∈ S1, i =
√
−1, and ω∗ is nominal frequency

8

8

8

8

8

Vground

I1 I2

I3

V1 V2

V3
external injections: I1, I2, I3

potentials: V1,V2,V3

reference: Vground = 0V

Note: quasi-stationarity assumption can be justified via singular perturbation analysis
& modeling can be improved using dynamic phasors [A. Stankovic & T. Aydin ’00]. 9 / 82



AC circuits – fundamental equations

5 Ohm’s law at every branch: Ii→j = 1
Zij

(Vi − Vj)

6 Kirchhoff’s current law for every bus: Ii +
∑

j Ij→i = 0

7 current balance equations (treating the ground as node with 0V):

Ii = −∑j Ij→i =
∑

j
1
Zij

(Vi−Vj) =
∑

j YijVj or I = Y · V

8 complex power: S = Vi I i = P + iQ

= active power + i · reactive power

8

8

8

8

8

Vground

I1 I2

I3

V1 V2

V3



I1
I2
I3


 =



Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33





V1

V2

V3




Note: all variables are in per unit (p.u.) scheme, i.e., normalized wrt base voltage 10 / 82

Static models for sources & loads

aggregated ZIP load model:

constant impedance Z +
constant current I +
constant power P Pi + i Qi

Ii

Zi
i

more general exponential load model: power = const. · (V /Vref)
const.

(combinations & variations learned from data)

conventional synchronous generators are typically controlled
to have constant active power output P and voltage magnitude E

sources interfaced with power electronics are typically controlled
to have constant active power P and reactive power Q

⇒ PQ buses have complex power S = P + iQ specified

⇒ PV buses have active power P and voltage magnitude E specified

⇒ slack buses have E and θ specified (not really existent)
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Kron Reduction of Circuits

Kron reduction [G. Kron 1939]

often (almost always) you will encounter Kron-reduced network models

8 30 8

8 81
2

3
Z12 Z23 Z12 + Z23

1 3=
General procedure:

0 convert const. power injections locally to shunt impedances Z = S/V 2
ref

1 partition linear current-balance equations via boundary & interior nodes :

(arises naturally, e.g., sources & loads, measurement terminals, etc.)

[
Iboundary

Iinterior

]
=

[
Yboundary Ybound-int

Y T
bound-int Yinterior

][
Vboundary

Vinterior

]

8

8

8

30 30

30

8

30 30

30

30 30

1

1

1

111

1
11

1
1

1

1
1

1

11

1

1

1

1

1

1

1 1 -1

-1-11
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Kron reduction cont’d

2 Gaussian elimination of interior voltages:

Vinterior = Yinterior
−1
(
Iinterior − Y T

bound-intVboundary

)

8

8

8

30 30

30

8

30 30

30

30 30

1

1

1

111

1
11

1
1

1

1
1

1

11

1

1

1

1

1

1

1 1 -1

-1-11

original circuit

I = Y · V

8

8

8

8

0.39 0.08 1.92

0.15

0.98

0.11 0.05

1.73

0.21

0.06

0.97 -0.66

0.72 -1

“equivalent” reduced circuit

Ired = Yred · Vboundary

⇒ reduced Y -matrix: Yred = Yboundary − Ybound-int · Yinterior
−1 · Y T

bound-int

⇒ reduced injections: Ired = Iboundary − Ybound-int · Yinterior
−1 · Iinterior
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Examples of Kron reduction
algebraic properties are preserved but the network changes significantly

Star-∆ transformation [A. E. Kennelly 1899, A. Rosen ’24]
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1.0 1.0

1.0
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8
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1/31/3

Kron reduction of load buses in IEEE 39 New England power grid
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},





(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0), ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ, ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability

!"#$%&'''%()(*%(+,-.,*%/012-3*%)0-4%5677*%899: !"#$%&'

(')$

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 10, 2009 at 14:48 from IEEE Xplore.  Restrictions apply.

⇒ topology without weights is meaningless!

⇒ shunt resistances (loads) are mapped to line conductances

⇒ many properties still open [FD & F. Bullo ’13, S. Caliskan & P. Tabuada ’14]
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Power Flow Formulations &
Approximations

Power balance eqn’s: “power injection = Σ power flows”
different formulations of the power flow equations

rectangular form: Si = Vi I i =
∑

j ViY ijV j or S = diag(V )YV

⇒ purely quadratic and useful for static calculations & optimization

matrix form: define unit-rank p.s.d. Hermitian matrix W = V · V T

with components Wij = ViV j , then power flow is Si =
∑

j Y ijWij

⇒ linear and useful for static calculations & optimization (more later)

polar form: insert V = Ee iθ and split real & imaginary parts:

active power: Pi =
∑

j BijEiEj sin(θi − θj) + GijEiEj cos(θi − θj)

reactive power: Qi = −∑j BijEiEj cos(θi − θj) + GijEiEj sin(θi − θj)

⇒ useful for dynamics, physical intuition, & system specs (today)
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Power flow simplifications & approximations
power flow equations are too complex & unwieldy for analysis & large computations

I active power: Pi =
∑

j BijEiEj sin(θi − θj) + GijEiEj cos(θi − θj)
I reactive power: Qi = −∑j BijEiEj cos(θi − θj) + GijEiEj sin(θi − θj)

1 lossless transmission lines Rij/Xij = −Gij/Bij ≈ 0

active power: Pi =
∑

j BijEiEj sin(θi − θj)

reactive power: Qi = −∑j BijEiEj cos(θi − θj)

2 decoupling near operating point Vi ≈ 1e iφ:

[
∂P/∂θ ∂P/∂E
∂Q/∂θ ∂Q/∂E

]
≈
[
? 0
0 ?

]

active power: Pi =
∑

j Bij sin(θi − θj) (function of angles)

reactive power: Qi = −∑j BijEiEj (function of magnitudes)
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Power flow simplifications & approximations cont’d

I active power: Pi =
∑

j BijEiEj sin(θi − θj) + GijEiEj cos(θi − θj)
I reactive power: Qi = −∑j BijEiEj cos(θi − θj) + GijEiEj sin(θi − θj)

3 linearization for small flows near operating point Vi ≈ 1e iφ:

active power: Pi =
∑

j Bij(θi − θj) (known as DC power flow)

reactive power: : Qi =
∑

j Bij(Ei − Ej) (formulation in p.u. system)

4 Multiple variations & combinations are possible

linearization & decoupling at arbitrary operating points

lines with constant R/X ratios [FD, J. Simpson-Porco, & F. Bullo ’14]

advanced linearizations [S. Bolognani & S. Zampieri ’12, ’14, B. Gentile et al. ’14]
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Dynamic Network
Component Models

Modeling the “essential” network dynamics
models can be arbitrarily detailed & vary on different time/spatial scales

1 active and reactive power flow

(e.g., lossless & decoupled here)

2 passive constant power loads

i
Pi + i Qi

3 electromech. swing dynamics
of synchronous machines

Pi,mechPi,inj

4 inverters: DC or variable AC
sources with power electronics

Pi ,inj =
∑

j
Bij sin(θi − θj)

Qi ,inj = −
∑

j
BijEiEj

Pi ,inj = Pi = const.

Qi ,inj = Qi = const.

Mi θ̈i + Di θ̇i = Pi ,mech − Pi ,inj

Ei = const.

(i) have constant/controllable PQ

(ii) or mimic generators with M = 0
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Common variations in dynamic network models
dynamic behavior is very much dependent on load models & generator models

1 frequency/voltage-depend. loads
[A. Bergen & D. Hill ’81, I. Hiskens &

D. Hill ’89, R. Davy & I. Hiskens ’97]

2 network-reduced models after
Kron reduction of loads
[H. Chiang, F. Wu, & P. Varaiya ’94]

(very common but poor
assumption: Gij = 0)

Di θ̇i + Pi = −Pi ,inj

fi (V̇i ) + Qi = −Qi ,inj

Mi θ̈i + D θ̇i = Pi ,mech

−
∑

j
BijEiEj sin(θi − θj)

−
∑

j
GijEiEj cos(θi − θj)

︸ ︷︷ ︸
effect of resistive loads
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},





(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0), ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ, ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability

!"#$%&'''%()(*%(+,-.,*%/012-3*%)0-4%5677*%899: !"#$%&'

(')$
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Common variations in dynamic network models — cont’d
dynamic behavior is very much dependent on load models & generator models

3 higher order generator dynamics
[P. Sauer & M. Pai ’98]

4 dynamic & detailed load models
[D. Karlsson & D. Hill ’94]

5 time-domain models [S. Caliskan &

P. Tabuada ’14, S. Fiaz et al. ’12]

voltages, controls, magnetics etc.

(reduction via singular perturbations)

aggregated dynamic load behavior

(e.g., load recovery after voltage step)

passive Port-Hamiltonian models

for machines & RLC circuitry

“Power system

research is all
about the art of
making the right

assumptions.”
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Outline

Introduction

Power Network Modeling

Feasibility, Security, & Stability
Decoupled Active Power Flow (Synchronization)
Reactive Power Flow (Voltage Collapse)
Coupled & Lossy Power Flow
Transient Rotor Angle Stability

Power System Control Hierarchy

Power System Oscillations

Conclusions
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Decoupled Active Power Flow
(Synchronization)



Synchronization & feasibility of active power flow
basic problem setup

structure-preserving power network model [A. Bergen & D. Hill ’81]:
(simple dynamics & decoupled lossless flows capture essential phenomena)

synchronous machines: Mi θ̈i + Di θ̇i = Pi −
∑

j
Bij sin(θi − θj)

frequency-dependent loads: Di θ̇i = Pi −
∑

j
Bij sin(θi − θj)

synchronization = sync’d frequencies & bounded active power flows

θ̇i = ωsync ∀ i ∈ V & |θi − θj | ≤ γ < π/2 ∀ {i , j} ∈ E

= active power flow feasibility & security constraints

sync is crucial for the functionality and operation of the power grid

explicit sync frequency: if sync, then ωsync =
∑

i Pi/
∑

i Di

(by summing over all equations)
21 / 82

Synchronization & feasibility of active power flow
some key questions

Given: network parameters & topology and load & generation profile

Q: “ ∃ an optimal, stable, and robust sync’d operating point ? ”

1 Security analysis [Araposthatis et al. ’81, Wu et al. ’80 & ’82, Ilić ’92, . . . ]

2 Load flow feasibility [Chiang et al. ’90, Dobson ’92, Lesieutre et al. ’99, . . . ]

3 Optimal generation dispatch [Lavaei et al. ’12, Bose et al. ’12, . . . ]

4 Transient stability [Sastry et al. ’80, Bergen et al. ’81, Hill et al. ’86, . . . ]

5 Inverters in microgrids [Chandorkar et. al. ’93, Guerrero et al. ’09, Zhong ’11,. . . ]

6 Complex networks [Hill et al. ’06, Strogatz ’01, Arenas et al ’08, . . . ]

Further reading
on sync problem:
(my perspective)

Synchronization in complex oscillator networks
and smart grids
Florian Dörflera,b,1, Michael Chertkovb, and Francesco Bulloa

aCenter for Control, Dynamical Systems, and Computation, University of California, Santa Barbara, CA 93106; and bCenter for Nonlinear Studies and Theory
Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Edited by Steven H. Strogatz, Cornell University, Ithaca, NY, and accepted by the Editorial Board November 14, 2012 (received for review July 16, 2012)

The emergence of synchronization in a network of coupled oscil-
lators is a fascinating topic in various scientific disciplines. A widely
adopted model of a coupled oscillator network is characterized by
a population of heterogeneous phase oscillators, a graph describ-
ing the interaction among them, and diffusive and sinusoidal
coupling. It is known that a strongly coupled and sufficiently
homogeneous network synchronizes, but the exact threshold from
incoherence to synchrony is unknown. Here, we present a unique,
concise, and closed-form condition for synchronization of the fully
nonlinear, nonequilibrium, and dynamic network. Our synchroni-
zation condition can be stated elegantly in terms of the network
topology and parameters or equivalently in terms of an intuitive,
linear, and static auxiliary system. Our results significantly improve
upon the existing conditions advocated thus far, they are provably
exact for various interesting network topologies and parameters;
they are statistically correct for almost all networks; and they can
be applied equally to synchronization phenomena arising in physics
and biology as well as in engineered oscillator networks, such as
electrical power networks. We illustrate the validity, the accuracy,
and the practical applicability of our results in complex network
scenarios and in smart grid applications.

nonlinear dynamics | power grids

The scientific interest in the synchronization of coupled
oscillators can be traced back to Christiaan Huygens’ seminal

work on “an odd kind sympathy” between coupled pendulum
clocks (1), and it continues to fascinate the scientific community
to date (2, 3). A mechanical analog of a coupled oscillator net-
work is shown in Fig. 1A and consists of a group of particles
constrained to rotate around a circle and assumed to move
without colliding. Each particle is characterized by a phase angle
θi and has a preferred natural rotation frequency ωi. Pairs of
interacting particles i and j are coupled through an elastic spring
with stiffness aij. Intuitively, a weakly coupled oscillator net-
work with strongly heterogeneous natural frequencies ωi does
not display any coherent behavior, whereas a strongly coupled
network with sufficiently homogeneous natural frequencies is
amenable to synchronization. These two qualitatively distinct
regimes are illustrated in Fig. 1 B and C.
Formally, the interaction among n such phase oscillators is

modeled by a connected graph G(V, E, A) with nodes V = {1, . . .,
n}, edges E ⊂ V × V, and positive weights aij > 0 for each un-
directed edge {i, k} ∈ E. For pairs of noninteracting oscillators
i and j, the coupling weight aij is 0. We assume that the node set
is partitioned as V = V1 ∪ V2, and we consider the following
general coupled oscillator model:

Miθ€i +Diθ_ i = ωi −
Xn

j=1
aij   sin

!
θi − θj

"
;  i∈V1

Diθ_ i = ωi −
Xn

j=1

aij   sin
!
θi − θj

"
;  i∈V2:

[1]

The coupled oscillator model [1] consists of the second-order

oscillators V1 with Newtonian dynamics, inertia coefficients Mi,
and viscous damping Di. The remaining oscillators V2 feature
first-order dynamics with time constants Di. A perfect electrical
analog of the coupled oscillator model [1] is given by the classic
structure-preserving power network model (4), our enabling
application of interest. Here, the first- and second-order dy-
namics correspond to loads and generators, respectively, and the
right-hand sides depict the power injections ωi and the power
flows aij sin(θi − θj) along transmission lines.
The rich dynamic behavior of the coupled oscillator model

[1] arises from a competition between each oscillator’s tendency
to align with its natural frequency ωi and the synchronization-
enforcing coupling aij sin(θi − θj) with its neighbors. If all natural
frequencies ωi are identical, the coupled oscillator dynamics [1]
collapse to a trivial phase-synchronized equilibrium, where all
angles θi are aligned. The dissimilar natural frequencies ωi, on
the other hand, drive the oscillator network away from this all-
aligned equilibrium. Moreover, even if the coupled oscillator
model [1] synchronizes, the motion of its center of mass still
carries the flux of angular rotation, respectively, the flux of elec-
trical power from generators to loads in a power grid. Despite all
these complications, the main result of this article is that, for a
broad range of network topologies and parameters, an elegant
and easily verified criterion characterizes synchronization of the
nonlinear and nonequilibrium dynamic oscillator network [1].

Review of Synchronization in Oscillator Networks
The coupled oscillator model [1] unifies various models in the
literature, including dynamic models of electrical power net-
works. Modeling of electrical power networks is discussed in SI
Text in detail. For V2 = , the coupled oscillator model [1]
appears in synchronization phenomena in animal flocking be-
havior (5), populations of flashing fireflies (6), and crowd syn-
chrony on London’s Millennium bridge (7), as well as in Huygen’s
pendulum clocks (8). For V1 = , the coupled oscillator model
(1) reduces to the celebrated Kuramoto model (9), which appears
in coupled Josephson junctions (10), particle coordination (11),
spin glass models (12, 13), neuroscience (14), deep brain stimu-
lation (15), chemical oscillations (16), biological locomotion (17),
rhythmic applause (18), and countless other synchronization phe-
nomena (19–21). Finally, coupled oscillator models of the form
shown in [1] are canonical models of coupled limit cycle oscillators
(22) and serve as prototypical examples in complex networks
studies (23–25).
The coupled oscillator dynamics [1] feature the synchronizing

effect of the coupling described by the graph G(V, E, A) and the
desynchronizing effect of the dissimilar natural frequencies ωi.

Author contributions: F.D., M.C., and F.B. designed research; F.D. performed research; F.D.
analyzed data; and F.D., M.C., and F.B. wrote the paper.

The authors declare no conflict of interest.
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A perspective from coupled oscillators

Mechanical oscillator network

Angles (θ1, . . . , θn) evolve on Tn as

Mi θ̈i + Di θ̇i = Pi −
∑

j Bij sin(θi − θj)

• inertia constants Mi > 0

• viscous damping Di > 0

• external torques Pi ∈ R
• spring constants Bij ≥ 0

Structure-preserving power network

Mi θ̈i + Di θ̇i = Pi −
∑

j
Bij sin(θi − θj)

Di θ̇i = Pi −
∑

j
Bij sin(θi − θj)

P3

P2
P1

P3

P2P1
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Phenomenology of sync in power networks
sync is crucial for AC power grids

P3

P2P1

P3

P2
P1

sync is a trade-off

✓i(t)

weak coupling & heterogeneous

✓i(t)

strong coupling & homogeneous24 / 82



Phenomenology of sync in power networks
sync is crucial for AC power grids

P3

P2P1

P3

P2
P1

sync is a trade-off

✓i(t)

weak coupling & heterogeneous Blackout India July 30/31 201224 / 82

Back of the envelope calculations for the two-node case
generator connected to identical motor shows bifurcation at difference angle θ = π/2

B sin(θ)

generator motor

P1 P2

M θ̈ + D θ̇ = P1 − P2 − 2B sin(θ) 2B sin(θ)
π0

|P1 − P2|

active
power

* *

θ

stable unstable

∃ stable sync ⇔ B > |P1 − P2|/2 ⇔ “ntwk coupling > heterogeneity”

Q1: Quantitative generalization to a
complex & large-scale network?

Q2: What are the particular metrics
for coupling and heterogeneity?

� �

�

�

� �

�

�

��

��

��

��

��

���

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��� ��

��

��

���
���

��

��

��

��

��

��

��

�� �� ��

��

��

��

��
��

��

��

��

��

��

�� �� ����

��
��

��

��

��

��

��

��

��

��

��

��

���

��

��

��

��

��

��

��

��

��� ��

��

��

��

��

��

��

��
��

��

��

��

�� ��

��
��

��

��

����

��

��

��

��

���

������

���

��� ���

���

���

���

���

���

���

���

G

G

G

G

G G

G

G

G
G

G

G
G

G

G

G

G G

G

G

G

G

G G

G G

G

G G

G

G

G

G

G G G G G

G

G

�

G

G

G

G

G

G

G

G

G

G

G

G

G

G

2QH�OLQH�'LDJUDP�RI�,(((�����EXV�7HVW�6\VWHP

,,7�3RZHU�*URXS������

6\VWHP�'HVFULSWLRQ�

����EXVHV
����EUDQFKHV
���ORDG�VLGHV
���WKHUPDO�XQLWV

25 / 82

Primer on algebraic graph theory
for a connected and undirected graph

Laplacian matrix L = “degree matrix” − “adjacency matrix”

L = LT =




...
. . .

... . .
. ...

−Bi1 · · · ∑n
j=1 Bij · · · −Bin

... . .
. ...

. . .
...


 ≥ 0

is positive semidefinite with one zero eigenvalue & eigenvector 1n

Notions of connectivity

spectral: 2nd smallest eigenvalue of L is “algebraic connectivity”λ2(L)

topological: degree
∑n

j=1 Bij or degree distribution

Notions of heterogeneity

‖P‖E,∞ = max{i ,j}∈E |Pi − Pj |, ‖P‖E,2 =
(∑

{i ,j}∈E |Pi − Pj |2
)1/2
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Synchronization in “complex” networks
for a first-order model — all results generalize locally

θ̇i = Pi −
∑

j
Bij sin(θi − θj)

1 local stability for equilibria satisfying |θ∗i − θ∗j | < π/2 ∀ {i , j} ∈ E
(linearization is Laplacian matrix)

2 necessary sync condition:
∑

j Bij ≥ |Pi − ωsync| ⇐ sync

(so that syn’d solution exists)

3 sufficient sync condition: λ2(L) > ‖P‖E,2 ⇒ sync

[FD & F. Bullo ’12]

⇒ ∃ similar conditions with diff. metrics on coupling & heterogeneity

⇒ Problem: sharpest general conditions are conservative
27 / 82



A nearly exact sync condition [FD, M. Chertkov, & F. Bullo ’13]

1 search equilibrium θ∗ with |θ∗i − θ∗j | ≤ γ < π/2 for all {i , j} ∈ E :

Pi =
∑

j
Bij sin(θi − θj) (?)

2 consider linear “small-angle” DC approximation of (?) :

Pi =
∑

j
Bij(δi − δj) ⇔ P = Lδ (??)

unique solution (modulo symmetry) of (??) is δ∗ = L†P

3 solution ansatz for (?): θ∗i − θ∗j = arcsin(δ∗i − δ∗j ) (for a tree)

Pi =
∑n

j=1
aij sin(θi − θj) =

∑n

j=1
aij sin

(
arcsin(δ∗i − δ∗j )

)
= Pi X

⇒ Thm: ∃ θ∗ with |θ∗i − θ∗j | ≤ γ ∀ {i , j} ∈ E ⇔
∥∥L†P

∥∥
E,∞ ≤ sin(γ)

28 / 82

Synchronization tests & power flow approximations

Sync cond’: (heterogeneity)/(ntwk coupling) < (transfer capacity)

‖L†P‖E,∞ ≤ sin(γ) & new DC approx. θ ≈ arcsin(L†P)

θ̇(t)

θ(t)

220

309

310

120

103

209

102102

118

307

302

216

202

θ̇(t)

θ(t)

+ 0.1% load

Reliability Test System RTS 96 under two loading conditions
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Synchronization tests & power flow approximations

Sync cond’: (heterogeneity)/(ntwk coupling) < (transfer capacity)

‖L†P‖E,∞ ≤ sin(γ) & new DC approx. θ ≈ arcsin(L†P)
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IEEE 118 bus system (Midwest)

Outperforms conventional DC approximation “on average & in the tail”.
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Decoupled Reactive Power
Flow (Voltage Collapse)



Voltage collapse in power networks

voltage instability: loading > capacity ⇒ voltages drop

“mainly” a reactive power phenomena

recent outages: Québec ’96, Scandinavia ’03, Northeast ’03, Athens ’04

“Voltage collapse is still

the biggest single threat

to the transmission sys-

tem. It’s what keeps me

awake at night.”

– Phil Harris, CEO PJM.
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Back of the envelope calculations for the two-node case
source connected to load shows bifurcation at load voltage Eload = Esource/2

reactive power balance at load:

v
o
l
t
a
g
e

Esource

Eload

B

Qload

(fixed)

(variable)

Qload = B Eload(Eload − Esource)

EloadE∗
source0

Q∗
load**

**

reactive
power

Eload ∈ R ⇔ Qload ≥ −B (Esource)2/4

∃ high load voltage solution ⇔ (load) < (network)(source voltage)2/4
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Intuition extends to complex networks – essential insights

Reactive power balance:

Qi = −∑j BijEiEj

Suff. & tight cond’ for general
case [J. Simpson-Porco, FD, & F. Bullo, ’14]:

∃ unique high-voltage solution Eload

⇔
4 · load

(admittance)(nominal voltage)2 < 1

1 nominal (zero load) voltageEnom

0 = −
∑

j
Bij Ei ,nom Ej ,nom

2 coord-trafo to solution guess:

xi = Ei/Ei ,nom − 1

3 Picard-Banach iteration x+ = f (x)
32 / 82

More back of the envelope calculations

Qload = B Eload(Eload − Esource)
Esource EloadB Qload

∃ closed-form sol’: Eload = Esource

(
1/2± 1/2

√
1 + 4Qload/(BE 2

source)
)

⇒ Taylor exp. for Esource→∞ (or Qload→0): Eload ≈ Esource +
Qload

BEsource

General case: existence & approximation from implicit function thm

if all loads Qi are “sufficiently small” [D. Molzahn, B. Lesieutre, & C. DeMarco ’12]

if slack bus has “sufficiently large” Esource [S. Bolognani & S. Zampieri ’12 & ’14]

if each source is above a “sufficiently large” Esource [B. Gentile et al. ’14]

if previous existence condition is met [J. Simpson-Porco, FD, & F. Bullo, ’14]

⇒ 1st order approximation: Eload ≈ Esource1 +
1

Esource
B−1Qload
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Linear DC approximation extends to complex networks
verification via IEEE 37 bus distribution system (SoCal)

DC approximation [Gentile, Simpson-

Porco, Dörfler, Zampieri, & Bullo, ’14]:

Eload ≈ Esource1 + B−1Qload/Esource

+O
(

1/E ∗source
3
)
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More on reactive power, voltage collapse & approximations

The Transmission Capacity of Power Networks
John W. Simpson-Porco⇤, Florian Dörfler†, Francesco Bullo⇤
⇤Center for Control, Dynamical Systems and Computation
Department of Mechanical Engineering †Automatic Control Laboratory
University of California at Santa Barbara Swiss Federal Institute of Technology (ETH) Zürich
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Network Structure Influences Load Flow Feasibility

When does there exist a stable, high-voltage load flow solution?

“Is a given network structurally susceptible to unfeasibility?”— [ F. Galiana, ’75]

“. . . information on network topology could significantly change
conservativeness of the results”— [M. Ilić, ’92]

“. . . theory needs to be pushed further in the direction of exploiting structural
features of the networks” — [D. Hill, ’06]

Key Question: How to include network structure in analysis?

Reactive Power Flow in Transmission Networks

•Reactive load flow is quadratic in voltage magnitudes

Qi = �
Xn+m

j=1
BijViVj cos(✓i � ✓j) (?)

•For two-bus decoupled load flow, (?) reduces to simple quadratic

Q = �bV (V � E) .

•When can we solve this equation? For any 0  � < 1/2,�����
Q

1
4bE

2

�����  4�(1 � �) () 9! V s.t.
|V � E|

E
 � .

Simple Insights

•Finite transmission capacity of 1
4bE

2

• “load voltage close to generator voltage”

How Can We Quantify Network Strength/Sti↵ness?

Partition variables according to loads (PQ bus) and generators (PV bus)

B =

✓
BLL BLG

BGL BGG

◆
, V =

✓
VL

VG

◆
, QL = �diag(VL) (BLLVL + BLGVG)

The zero-load solution is V ⇤
L , �B�1

LLBLGVG. Define the sti↵ness matrix

Qcrit ,
1

4
diag(V ⇤

L ) · BLL · diag(V ⇤
L )

Main Result: (Decoupled) Voltage Stability Condition

Let 0  � < 1
2. If

� , kQ�1
critQLk1  4�(1 � �)

then

1.9! voltage-stable solution VL to (?) s.t. |Vi � V ⇤
i |/V ⇤

i  �;

2. Venikov Index KV =
p

1 �� lower-bounds (scaled) voltage-space
distance to nearest unstable type-1 solution;

3. Result is necessary and su�cient along ray QL = ↵ · Qcrit1n, ↵ 2 [0, 1].

Spring Network Interpretation of Stability Condition

• kQ�1
critQLk1 < 1 means that Network Sti↵ness > Loading

•Many other interpretations: Thevnin equiv., L-index stability, short-circuit
ratios, dV/dQ index stability, multi-bus QV curves, ...

Application: Stress Assessment & Online Monitoring

� � �� �� �� �� ��
���

� ��

� �	

� �


�

���

Key Ideas:
• Shunts support voltage magnitudes, but hide proximity to collapse

=) Per-unit voltage (blue line) is a poor observable for monitoring

•Ratios Vi/V
⇤
i (red line) indicate true level of network stress

Application: Power Flow Approximation & Control

If � < 1, the voltage-stable solution to (?) is (w/ Gentile & Zamp.)

VL = diag(V ⇤
L )

✓
1n �

1

4
Q�1

critQL

◆
+ h.o.t.

•Distributed control/optimization (w/ Todescato & Carli)
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Ongoing Work and Future Directions

Coming Soon: existence conditions and
linear approximations for coupled load flow

Transmission-level voltage stability indices

“power networks” � “distributed control”

Supported in part by NSF CNS-1135819, NSERC, and the Peter J. Frenkel Foundation. {johnwsimpsonporco,bullo}@engineering.ucsb.edu, dorfler@ethz.ch http://motion.me.ucsb.edu
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Coupled & Lossy Power Flow

Simplest example shows surprisingly complex behavior

PV source, PQ load, & lossless line
B

after eliminating θ, there exists
Eload ∈ R≥0 if and only if

Observations:

1 P = 0 case consistent with
previous decoupled analysis

2 Q = 0 case delivers 1/2 transfer
capacity from decoupled case

3 intermediate cases Q = P tanφ
give so-called “nose curves”

P = B Esource Eload sin(θ)

Q = B E 2
load − B Esource Eload cos(θ)

P2−B E 2
source Q ≤ B2E 4

source / 4

Eload

Esource

Q

|B|E2
source

P

|B|E2
source
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Coupled & lossy power flow in complex networks

I active power: Pi =
∑

j BijEiEj sin(θi − θj) + GijEiEj cos(θi − θj)
I reactive power: Qi = −∑j BijEiEj cos(θi − θj) + GijEiEj sin(θi − θj)

what makes it so much harder than the previous two node case?

losses, mixed lines, cycles, PQ-PQ connections, . . .

much theoretic work, qualitative understanding, & numeric approaches:

existence of solutions [Thorp, Schulz, & Ilić ’86, Wu & Kumagai ’82]

solution space [Hiskens & Davy ’01, Overbye & Klump ’96, Van Cutsem ’98, . . . ]

distance-to-failure [Venikov ’75, Abe & Isono ’76, Dobson ’89, Andersson & Hill ’93, . . . ]

convex relaxation approaches [Molzahn, Lesieutre, & DeMarco ’12]

little analytic & quantitative understanding beyond the two-node case

“Whoever figures that one out wins a noble prize!” Pete Sauer
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Transient Rotor
Angle Stability

Revisit of the two-node case — the forced pendulum
more complex than anticipated

B sin(θ)

generator motor

P1 P2

θ̇ = ω

Mω̇ = −Dω + P1 − P2 − 2B sin(θ)

2B sin(θ)
π0

|P1 − P2|

active
power

* *

θ

stable unstable

Local stability: ∃ local stable solution ⇔ B > |P1 − P2|/2

Global stability: depends on gap B > |P1 − P2|/2 and D/M ratio
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

(D/M) < (D/M)critical
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists

D > Dcritical
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D = Dcritical

✓ ✓ ✓

✓̇ ✓̇ ✓̇
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists

D > Dcritical
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D = Dcritical

✓ ✓ ✓

✓̇ ✓̇ ✓̇

stable

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999 761

The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
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sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
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and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.
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provide theoretical justifications for this property: it merely
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
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holds. Thus, this deformation (or others) cannot help in providing
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We first summarize the main points of the preceding sections.
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system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D = Dcritical

✓ ✓ ✓

✓̇ ✓̇ ✓̇IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999 761

The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
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pathological set where the property does not hold is thin, in particular,
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where is usually a vector field in (i.e., with continuous
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sally.
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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to , to vary in this second analysis. It should be evident to the reader,
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parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
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above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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The following result, quoted from [3], states that as long as
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boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
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Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.
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of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
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parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
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of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
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Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

(D/M) = (D/M)critical

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999 761

The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
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above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.
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The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
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Fig. 3. Phase plot of a single salient pole generator connected to an infinite
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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The following result, quoted from [3], states that as long as
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boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).
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Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
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of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists

D > Dcritical

762 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999

Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D = Dcritical

✓ ✓ ✓

✓̇ ✓̇ ✓̇

✓

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999 761

The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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expect that will be a residual set for similar reasons as , but
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parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
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one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
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in that case, only the parameter was varied, with the others fixed at
the values and .
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are three possible structures for the phase plane, depending on how
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the assumptions of Theorem 1 can only be expected to hold for
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controlling uep is that the full system and the gradient system
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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original system (8), (9) for parameter values in each of the regions of
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is of the type of Fig. 2, where the dynamic property does not hold. So
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accomplished?
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obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).
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Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.
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and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
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Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line
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This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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is of the type of Fig. 2, where the dynamic property does not hold. So
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accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.
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We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
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always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.
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to an infinite bus through a lossless transmission line
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This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.
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provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 3. Phase plot of a single salient pole generator connected to an infinite
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.
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1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
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2) The preceding requirement is not a generic property of power
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qualitative structure of the flow. The Kupka–Smale theorem (see [10])
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists

D > Dcritical

762 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.
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We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.
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the desired dynamic property. This is now stated more precisely.
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Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
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of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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were allowed to vary. With and varying, Fig. 4 represents the
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As varies in , the union of these curves spans the com-
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parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
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obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.
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1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists

D > Dcritical
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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by the stable manifold . The critical case, is shown in
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and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D = Dcritical
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .
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where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
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is generic. Alternatively, is the thin curve in the figure. With the
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can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).
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Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.
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The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.
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In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line
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This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,
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by the stable manifold . The critical case, is shown in
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and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
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standard deformation (4), (5) and varying from zero to one, we
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area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
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systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
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of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
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parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
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holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.
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We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
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cannot in general be drawn, because we are requiring that
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parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line
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This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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the assumptions of Theorem 1 can only be expected to hold for
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holds. Thus, this deformation (or others) cannot help in providing
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
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sally.
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states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
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which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,
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the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.
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We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
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same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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expect that will be a residual set for similar reasons as , but
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parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 3. Phase plot of a single salient pole generator connected to an infinite
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical

762 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999

Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
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the assumptions of Theorem 1 can only be expected to hold for
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holds. Thus, this deformation (or others) cannot help in providing
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have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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a theoretical justification for the BCU method.
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controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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sally.
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parameter can have a nonempty interior. This explains the difficulty
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generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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We now study the one-parameter transversality condition in the
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As varies in , the union of these curves spans the com-
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parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
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what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.
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is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).
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Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
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should not be an obstacle for stating properties that hold almost
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parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
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which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists

D > Dcritical

762 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999

Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.
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We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
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have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.
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Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
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The following result, quoted from [3], states that as long as
is satisfied along , then the uep’s on the stability

boundary are preserved throughout the deformation, yielding
the desired dynamic property. This is now stated more precisely.
Theorem 1: Let be a stable equilibrium point of (3)–(6) [or (1)

and (2)]. If is satisfied for (4) and (5) for every then
the following holds.
1) the equilibrium point is on the stability boundary

of (1) and (2) if and only if the equilibrium point
is on the stability boundary of (3)–(6).

2)

Theorem 1 and its variations lie at the heart of the literature on the
BCU method. This kind of statement, however, carries the complexity
over to the hypothesis, in particular to the one parameter transversality
condition, which is very difficult to verify. Thus, one could only gain
confidence in the BCU method in this fashion if one were convinced
that this assumption is always, or at least generically, satisfied for our
models. The study of such genericity is the content of the following
sections.

III. GENERIC PROPERTIES OVER A ONE-PARAMETER FAMILY
The argument of genericity is frequently invoked in mathematics

and its applications; the motivation is that certain pathological cases
of the mathematics, which have no likelihood of appearing as models,
should not be an obstacle for stating properties that hold almost
always.
For deterministic problems, a topological notion of genericity is

often employed. Given a family of models where the
parameter set is a topological space, we can say, following [7],
that a property is generic if it holds over where is open
and dense in . Sometimes a slightly weaker notion is employed,
allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
it has empty interior.
In the theory of dynamical systems, the object of study is the

system

(7)

where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
of genericity. In the qualitative study of dynamical systems, a
fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion
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cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
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of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.
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standard deformation (4), (5) and varying from zero to one, we
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plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
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the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.
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controlling uep is that the full system and the gradient system
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the desired dynamic property. This is now stated more precisely.
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that a property is generic if it holds over where is open
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allowing to be a residual set, i.e., a countable intersection of open
and dense sets (see [10]). Intuitively, these definitions imply that the
pathological set where the property does not hold is thin, in particular,
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where is usually a vector field in (i.e., with continuous
derivatives). In this case, the topology of is natural for questions
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fundamental property (see [10] for details) is the following.

All equilibria and periodic orbits are hyperbolic and all the
corresponding stable and unstable manifolds intersect transver-
sally.

The failure of is related to bifurcations, i.e., changes in the
qualitative structure of the flow. The Kupka–Smale theorem (see [10])
states that for systems over a compact manifold, is in fact generic,
i.e., the set verifies is residual in . Can
such genericity be extended to a one-parameter family of systems,
rather than one? In other words, consider the family

which deforms to another system , as is done in (4) and (5). For
simplicity, assume is fixed. Is it reasonable to expect that will
hold over all generically over ? Clearly, the conclusion

Fig. 1. Phase plot of a single salient pole generator connected to an infinite
bus: .

cannot in general be drawn, because we are requiring that

where verifies . If is fixed, we can
expect that will be a residual set for similar reasons as , but
the intersection of an uncountable family of such sets need not be
residual. Alternatively, the complementary set for which one-
parameter transversality fails is the union of over . While
each element in the union may be a thin set, their union over a real
parameter can have a nonempty interior. This explains the difficulty
of using a one-parameter deformation as a means of establishing that
two dynamical systems have the same qualitative properties. Unless
one can show transversality is satisfied, the deformation argument
is useless. For an illustration of this in a more elementary setting,
see [8].
Do these general remarks apply to the statements of Theorem 1? In

the following section we show that the one-parameter transversality
condition is broken over a thick set of systems for the case of the
one-machine-infinite-bus (OMIB) system.

IV. PARAMETRIC STUDY OF THE
ONE-MACHINE INFINITE-BUS PROBLEM

In this section we examine a single salient-pole generator connected
to an infinite bus through a lossless transmission line

(8)

(9)

This model is a differential equation with parameters ,
and . Since these parameters are physically motivated, it

is natural to study genericity in parameter space: a property will be
generic if it holds over an open and dense set of parameters.
In fact, (8) and (9) were used in [9] to study structural stability and,

in that case, only the parameter was varied, with the others fixed at
the values and .
As is common in these OMIB models, it is shown in [9] that there
are three possible structures for the phase plane, depending on how
the damping compares to a critical value . This
is illustrated in Figs. 1–3. In these figures, sep denotes the stable
equilibrium point of interest and the neighboring uep’s are

and . These points are independent
of .
If , a typical phase plot is shown in Fig. 1. In this case,

the region of stability for the sep is shaded and the boundary consists
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Fig. 2. Phase plot of a single salient pole generator connected to an infinite
bus: .

Fig. 3. Phase plot of a single salient pole generator connected to an infinite
bus: .

of the union of the stable manifolds and . For ,
the phase plot shown in Fig. 2 shows the region of stability bounded
by the stable manifold . The critical case, is shown in
Fig. 3, in which the stability region is bounded by the stable manifold

and part of the stable manifold . Note that the transversality
condition is satisfied in all cases except , where and

have a common part. Thus, is generic.
We now study the one-parameter transversality condition in the

language of Section III. Since it would be difficult to visualize the
situation in a five-parameter space, we will only allow , in addition
to , to vary in this second analysis. It should be evident to the reader,
however, that the situation would be no different if all parameters
were allowed to vary. With and varying, Fig. 4 represents the
values for which the critical phase plot of Fig. 3 occurs. The set
of parameter values which satisfy the condition is the complement
of the curve of Fig. 4. This is an open and dense set and the property
is generic. Alternatively, is the thin curve in the figure. With the
standard deformation (4), (5) and varying from zero to one, we
can repeat the procedure and find the set of parameter values
where the deformed system verifies . The complementary set
for several representative values of is depicted in the lines of Fig. 5.
As varies in , the union of these curves spans the com-

plementary set which is the shaded region of Fig. 5. The one
parameter transversality condition is satisfied only over the empty
area of Fig. 5. This is the only region where Theorem 1 applies,
therefore, the only region in which the desired dynamic property
(same uep’s in the stability boundary for full- and reduced-order
systems) can be guaranteed to hold.

Fig. 4. Parameter values for which the stable and unstable manifolds of the
unstable equilibria do not intersect transversally.

Fig. 5. Parameter values (shaded) for which the one-parameter transversality
condition is not satisfied.

Now, these regions correspond exactly to the areas below and
above the curve of Fig. 4. In fact, one could have arrived at the
same conclusion more directly by simply drawing phase plots of the
original system (8), (9) for parameter values in each of the regions of
Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.

3) A one-parameter deformation is not an appropriate tool to
provide theoretical justifications for this property: it merely
translates the problem into an unverifiable transversality con-
dition.

D < Dcritical
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Fig. 4. For the lightly damped region below the curve the phase plot
is of the type of Fig. 2, where the dynamic property does not hold. So
what has the study via deformation and one-parameter transversality
accomplished?
This is precisely the point: this deformation does not help in

obtaining guarantees for the BCU method, it simply reparameterizes
the set of bad parameter values in an indirect way. For this example,
the assumptions of Theorem 1 can only be expected to hold for
the region of parameters in which the dynamic property already
holds. Thus, this deformation (or others) cannot help in providing
a theoretical justification for the BCU method.

V. DISCUSSION AND CONCLUSIONS
We first summarize the main points of the preceding sections.
1) A requirement for the BCU method to be able to find the

controlling uep is that the full system and the gradient system
should have the same uep’s on the stability boundary.

2) The preceding requirement is not a generic property of power
system models.
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D = Dcritical
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Revisit of the two-node case — cont’d
the story is not complete . . . some further effects that we swept under the carpet

Voltage reduction: to maintain a constant voltage, a generator needs
to provide reactive power. When encountering the maximum reactive
power support, the generator becomes a PQ bus and voltage drops.

⇡0

|P1 � P2|

active
power

* *

✓

stable unstable

⇡0

|P1 � P2|

active
power

✓

unstable* *stable

⇡ ✓

reactive
power

0

Load sensitivity: different behavior depending on load model: resistive,
constant power, frequency-dependent, dynamic, power electronics, . . .

Singularity-issues for coupled power flows (load voltage collapse)

Losses & higher-order dynamics change stability properties . . .

⇒ quickly run into computational approaches
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Transient stability in multi-machine power systems

generators:

loads:

θ̇i = ωi

Mi ω̇i = −Diωi + Pi −
∑

j
BijEiEj sin(θi − θj)

Qi = −
∑

j
BijEiEj cos(θi − θj)

Di θ̇i = Pi −
∑

j
BijEiEj sin(θi − θj)

Qi = −
∑

j
BijEiEj cos(θi − θj)

Challenge (improbable): faster-than-real-time transient stability assessment

Energy function methods for simple lossless models via Lyapunov function

V (ω, θ,E ) =
∑

i

1

2
Miω

2
i −
∑

i
Piθi−

∑
i
Qi log Ei−

∑
ij
BijEiEj cos(θi−θj)

Computational approaches: level sets of energy functions & unstable
equilibria, sum-of-squares methods, convex optimization approaches,
time-domain simulations, . . . (more later this week)
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A plethora of control tasks and nested control layers
organized in hierarchy and separated by states & spatial/temporal/centralization scales

FRONT A

power system stabilizers

voltage regulation

wide-area
control automatic

generation control

SCADA &
monitoring dispatch, balancing,

& demand response

advanced

recovery

planning

deg
re

e 
of c

en
tr
al

iz
at

io
n

tim
e scale

low level device controllers

protection & breakers

spatial scalere
quir

ed
 m

odel
 k

now
le

dge

We will focus on frequency control & primary/secondary/tertiary layers.

All dynamics & controllers are interacting. Classification & hierarchy are for simplicity.
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Objectives



Hierarchical frequency control architecture & objectives

Power System

3. Tertiary control (offline)

Goal: optimize operation

Strategy: centralized & forecast

2. Secondary control (minutes)

Goal: maintain operating point
in presence of disturbances

Strategy: centralized

1. Primary control (real-time)

Goal: stabilize frequency
& share unknown load

Strategy: decentralized

Q: Is this layered & hierarchical

architecture still appropriate

for tomorrow’s power system?
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Is the hierarchical control architecture still appropriate?

Some recent developments
I increasing renewable integration

I synchronous machines replaced
by power electronics sources

I bulk generation replaced by
distributed low-inertia sources

I deregulated energy markets

I low gas prices & substitutions

Some “new” scenarios
I alternative spinning reserves:

storage, load control, & DER

I networks of low-inertia &
distributed renewable sources

I small-footprint islanded systems
43 / 82

Need to adapt the control hierarchy in tomorrow’s grid

/perational challenges

I more uncertainty & less inertia

I more volatile & faster fluctuations

I plug’n’play control: fast, model-free,
& without central authority

,pportunities

I re-instrumentation: comm & sensors

I more & faster spinning reserves

I advances in control of cyber-
physical & complex systems

⇒ break vertical & horizontal hierarchy Power System
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Primary Control



Decentralized primary control of active power

Emulate physics of dissipative
coupled synchronous machines:

Mi θ̈ + Di θ̇i

= P∗i −
∑

j
Bij sin(θi − θj)

Conventional wisdom: physics
are naturally stable & sync fre-
quency reveals power imbalance

P/θ̇ droop control:

(ωi − ω∗) ∝ (P∗i − Pi (θ))

m
Di θ̇i = P∗i − Pi (θ)

Hz

power suppliedpower consumed

50
49 51

5248

recall: ωsync =
∑

i P
∗
i /Di

ωsync

45 / 82

Putting the pieces together...

network physics

Diθ̇i = (P ∗
i − Pi(θ))

droop control

power balance: Pmech
i = P ∗

i + P c
i − Pi(θ)

power flow: Pi(θ) =
∑

j
Bij sin(θi − θj)

synchronous machines: Mi θ̈i + Di θ̇i = P∗i −
∑

j
Bij sin(θi − θj)

inverter sources &

controllable loads: Di θ̇i = P∗i −
∑

j
Bij sin(θi − θj)

passive loads &

power-point tracking sources: 0 = P∗i −
∑

j
Bij sin(θi − θj)
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Closed-loop stability under droop control

Theorem: stability of droop control [J. Simpson-Porco, FD, & F. Bullo, ’12]

∃ unique & exp. stable frequency sync ⇐⇒ active power flow is feasible

Main proof ideas and some further results:

• stability via Jacobian arguments (as before)

• synchronization frequency: ωsync = ω∗ +

∑
sources P

∗
i +

∑
loads P

∗
i∑

sourcesDi
(∝ power balance)

• steady-state power injections: Pi =

{
P∗i (load #i)

P∗i − Di (ωsync−ω∗) (source #i)
(depend on Di & P∗i )
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power sharing &
economic optimality
under droop control

(sometimes in tertiary layer)



Objective I: decentralized proportional load sharing

1) Sources have injection constraints: Pi (θ) ∈
[
0,P i

]

2) Load must be serviceable: 0 ≤
∣∣∣
∑

loads P
∗
j

∣∣∣ ≤
∑

sources P j

3) Fairness: load should be shared proportionally: Pi (θ) /P i = Pj(θ) /P j

load

source # 2source # 1

P1

P 1

P2

P 2
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Objective I: decentralized proportional load sharing

1) Sources have injection constraints: Pi (θ) ∈
[
0,P i

]

2) Load must be serviceable: 0 ≤
∣∣∣
∑

loads P
∗
j

∣∣∣ ≤
∑

sources P j

3) Fairness: load should be shared proportionally: Pi (θ) /P i = Pj(θ) /P j

A little calculation reveals in steady state:

Pi (θ)

P i

!
=

Pj(θ)

P j

⇒ P∗i − (Diωsync − ω∗)
P i

!
=

P∗j − (Djωsync − ω∗)
P i

. . . so choose
P∗i
P i

=
P∗j

P j

and
Di

P i

=
Dj

P j
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Objective I: decentralized proportional load sharing

1) Sources have injection constraints: Pi (θ) ∈
[
0,P i

]

2) Load must be serviceable: 0 ≤
∣∣∣
∑

loads P
∗
j

∣∣∣ ≤
∑

sources P j

3) Fairness: load should be shared proportionally: Pi (θ) /P i = Pj(θ) /P j

Theorem: fair proportional load sharing [J. Simpson-Porco, FD, & F. Bullo, ’12]

Let the droop coefficients be selected proportionally:

Di/P i = Dj/P j & P∗i /P i = P∗j /P j

The the following statements hold:

(i) Proportional load sharing: Pi (θ) /P i = Pj(θ) /P j

(ii) Constraints met: 0≤
∣∣∣
∑

loads P
∗
j

∣∣∣≤
∑

sources P j ⇔ Pi (θ) ∈
[
0,P i

]
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Objective I: fair proportional load sharing
proportional load sharing is not always the right objective

load

source # 2source # 1

source # 3
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Objective II: optimal power flow = tertiary control
an offline resource allocation/scheduling problem

minimize {cost of generation, losses, . . . }
subject to

equality constraints: power balance equations

inequality constraints: flow/injection/voltage constraints

logic constraints: commit generators yes/no

...

Will be discussed in detail later.
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Objective II: simple economic dispatch
minimize the total accumulated generation (many variations possible)

minimize θ∈Tn , u∈RnI f (u) =
∑

sources
αiu

2
i

subject to

source power balance: P∗i + ui = Pi (θ)

load power balance: P∗i = Pi (θ)

branch flow constraints: |θi − θj | ≤ γij < π/2

Unconstrained case: identical marginal costs αiu
∗
i = αju

∗
j at optimality

In conventional power system operation, the economic dispatch is

solved offline, in a centralized way, & with a model & load forecast

In a grid with distributed energy resources, the economic dispatch should be

solved online, in a decentralized way, & without knowing a model
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Objective II: decentralized dispatch optimization

Theorem: optimal droop [FD, Simpson-Porco, & Bullo ’13, Zhao, Mallada, & FD ’14]

The following statements are equivalent:

(i) the economic dispatch with cost coefficients αi is strictly feasible
with global minimizer (θ∗, u∗).

(ii) ∃ droop coefficients Di such that the power system possesses a
unique & locally exp. stable sync’d solution θ.

If (i) & (ii) are true, then θi∼θ∗i , u∗i =−Di (ωsync−ω∗), & Diαi = Djαj .

includes proportional load sharing αi ∝ 1/P i

similar results hold for strictly convex cost & general constrained case

similar results in transmission ntwks with DC flow [E. Mallada & S. Low, ’13]

& [N. Li, L. Chen, C. Zhao, & S. Low ’13] & [X. Zhang & A. Papachristodoulou, ’13] &

[M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, ’13] & . . .
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Some quick simulations & extensions

IEEE 39 New England
with load step at 1s
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t →∞: frequency
∝ power imbalance

⇒ strictly convex & differentiable cost

f (u) =
∑

sources ci (ui )

⇒ non-linear frequency droop curve

c ′i
−1

(θ̇i ) = P∗i − Pi (θ)

⇒ include dead-bands, saturation, etc.
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Secondary Control

Secondary frequency control

Problem: steady-state frequency
deviation (ωsync 6= ω∗)

Solution: integral control
of frequency error

Basics of integral control 1
s :

ωsync

1 discrete time: ui (t + 1) = ui (t) + k · θ̇i (t) with gain k > 0

2 continuous-time: ui (t) = k ·
∫ t

0 θ̇i (τ) dτ or u̇i (t) = k ·θ̇i (t)

⇒ θ̇i (t) is zero in (a possibly stable) steady state

⇒ add additional injection ui (t) to droop control
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Decentralized secondary integral frequency control

1
s add local integral controller

to every droop controller

⇒ stable closed-loop &

zero frequency deviation X
⇒ sometimes globally stabilizing

[C. Zhao, E. Mallada, & FD, ’14] X

/ every integrator induces a 1d
equilibrium subspace

/ injections live in subspace of
dimension # integrators

/ load sharing & economic
optimality are lost . . .
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Figure 9.8 Supplementary control added to the turbine governing system.

shown by the dashed line, consists of an integrating element which adds a control signal !Pω that is
proportional to the integral of the speed (or frequency) error to the load reference point. This signal
modifies the value of the setting in the Pref circuit thereby shifting the speed–droop characteristic
in the way shown in Figure 9.7.

Not all the generating units in a system that implements decentralized control need be equipped
with supplementary loops and participate in secondary control. Usually medium-sized units are
used for frequency regulation while large base load units are independent and set to operate at a pre-
scribed generation level. In combined cycle gas and steam turbine power plants the supplementary
control may affect only the gas turbine or both the steam and the gas turbines.

In an interconnected power system consisting of a number of different control areas, secondary
control cannot be decentralized because the supplementary control loops have no information as to
where the power imbalance occurs so that a change in the power demand in one area would result
in regulator action in all the other areas. Such decentralized control action would cause undesirable
changes in the power flows in the tie-lines linking the systems and the consequent violation of the
contracts between the cooperating systems. To avoid this, centralized secondary control is used.

In interconnected power systems, AGC is implemented in such a way that each area, or subsystem,
has its own central regulator. As shown in Figure 9.9, the power system is in equilibrium if, for each
area, the total power generation PT, the total power demand PL and the net tie-line interchange
power Ptie satisfy the condition

PT − (PL + Ptie) = 0. (9.8)

The objective of each area regulator is to maintain frequency at the scheduled level (frequency
control) and to maintain net tie-line interchanges from the given area at the scheduled values (tie-
line control). If there is a large power balance disturbance in one subsystem (caused for example by
the tripping of a generating unit), then regulators in each area should try to restore the frequency
and net tie-line interchanges. This is achieved when the regulator in the area where the imbalance
originated enforces an increase in generation equal to the power deficit. In other words, each
area regulator should enforce an increased generation covering its own area power imbalance and
maintain planned net tie-line interchanges. This is referred to as the non-intervention rule.

control
area

remainder
control
areas

PT

PL

Ptie

Figure 9.9 Power balance of a control area.

turbine governor integral control loop
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Automatic generation control (AGC)

ACE area control error =

{ frequency error } +

{ generation - load - tie-line flow }

1
s centralized integral control:

p(t) =

∫ t

0
ACE(τ) dτ

generation allocation:
ui (t) = λip(t), where λi is

generation participation factor
(in our case λi = 1/αi )

⇒ assures identical marginal
costs: αiui = αjuj

, load sharing & economic
optimality are recovered

control

area

remainder

control

areas

P
T

PL

Ptie

      

generation

load

load

generation

tie-line flow

frequency error

1

s

+
ACE

++

-
-

λ1

λ2
u2

u1p

λn
un

AGC implementation
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Drawbacks of conventional secondary frequency control

Interconnected Systems

• centralized automatic
generation control (AGC)

control

area

remainder

control

areas

P
T

PL

Ptie

      

generation

load

Isolated Systems

• decentralized PI control
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shown by the dashed line, consists of an integrating element which adds a control signal !Pω that is
proportional to the integral of the speed (or frequency) error to the load reference point. This signal
modifies the value of the setting in the Pref circuit thereby shifting the speed–droop characteristic
in the way shown in Figure 9.7.

Not all the generating units in a system that implements decentralized control need be equipped
with supplementary loops and participate in secondary control. Usually medium-sized units are
used for frequency regulation while large base load units are independent and set to operate at a pre-
scribed generation level. In combined cycle gas and steam turbine power plants the supplementary
control may affect only the gas turbine or both the steam and the gas turbines.

In an interconnected power system consisting of a number of different control areas, secondary
control cannot be decentralized because the supplementary control loops have no information as to
where the power imbalance occurs so that a change in the power demand in one area would result
in regulator action in all the other areas. Such decentralized control action would cause undesirable
changes in the power flows in the tie-lines linking the systems and the consequent violation of the
contracts between the cooperating systems. To avoid this, centralized secondary control is used.

In interconnected power systems, AGC is implemented in such a way that each area, or subsystem,
has its own central regulator. As shown in Figure 9.9, the power system is in equilibrium if, for each
area, the total power generation PT, the total power demand PL and the net tie-line interchange
power Ptie satisfy the condition

PT − (PL + Ptie) = 0. (9.8)

The objective of each area regulator is to maintain frequency at the scheduled level (frequency
control) and to maintain net tie-line interchanges from the given area at the scheduled values (tie-
line control). If there is a large power balance disturbance in one subsystem (caused for example by
the tripping of a generating unit), then regulators in each area should try to restore the frequency
and net tie-line interchanges. This is achieved when the regulator in the area where the imbalance
originated enforces an increase in generation equal to the power deficit. In other words, each
area regulator should enforce an increased generation covering its own area power imbalance and
maintain planned net tie-line interchanges. This is referred to as the non-intervention rule.

control
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Figure 9.9 Power balance of a control area.

centralized &

not applicable

to DER
scenarios

does not maintain

load sharing or

economic optimality

Distributed energy ressources require distributed (!) secondary control.
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An incomplete literature review of a busy field

ntwk with unknown disturbances ∪ integral control ∪ distributed averaging

all-to-all source frequency & injection averaging [Q. Shafiee, J. Vasquez, & J. Guerrero,

’13] & [H. Liang, B. Choi, W. Zhuang, & X. Shen, ’13] & [M. Andreasson, D. V.

Dimarogonas, K. H. Johansson, & H. Sandberg, ’12]

optimality w.r.t. economic dispatch [E. Mallada & S. Low, ’13] & [M. Andreasson, D.

V. Dimarogonas, K. H. Johansson, & H. Sandberg, ’13] & [X. Zhang and

A. Papachristodoulou, ’13] & [N. Li, L. Chen, C. Zhao & S. Low ’13]

ratio consensus & dispatch [S.T. Cady, A. Garcıa-Domınguez, & C.N. Hadjicostis, ’13]

load balancing in Port-Hamiltonian networks [J. Wei & A. Van der Schaft, ’13]

passivity-based network cooperation and flow optimization [M. Bürger, D. Zelazo, &

F. Allgöwer, ’13, M. Bürger & C. de Persis ’13, He Bai & S.Y. Shafi ’13]

distributed PI avg optimization [G. Droge, H. Kawashima, & M. Egerstedt, ’13]

PI avg consensus [R. Freeman, P. Yang, & K. Lynch ’06] & [M. Zhu & S. Martinez ’10]

decentralized “practical” integral control [N. Ainsworth & S. Grijalva, ’13]

The following idea precedes most references, it’s simpler, & it’s more robust.
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Distributed Averaging PI (DAPI) control

Di θ̇i = P∗i − Pi (θ)− Ωi

ki Ω̇i = Di θ̇i−
∑

j ⊆ sources

aij · (αiΩi−αjΩj)

• no tuning & no time-scale

separation: ki ,Di > 0

• distributed & modular:

connected comm. ⊆ sources

• recovers primary op. cond.

(load sharing & opt. dispatch)

⇒ plug’n’play implementation

Power System

Secondary

Primary

Tertiary

Secondary Secondary

Primary

Tertiary

Primary

Tertiary

P1 P2 Pnθ̇1 θ̇nθ̇2

Ω2 ΩnΩ1θ̇1 θ̇2 θ̇n

Ω2/D2

Ω1/D1

…

…

…

Theorem: stability of DAPI
[J. Simpson-Porco, FD, & F. Bullo, ’12]

[C. Zhao, E. Mallada, & FD ’14]

primary droop controller works

⇐⇒
secondary DAPI controller works
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Simulations cont’d

IEEE 39 New England with
decentralized PI control
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IEEE 39 New England with
distributed DAPI control
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DAPI control minimizes
cost with little effort
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Plug’n’play architecture
flat hierarchy, distributed, no time-scale separations, & model-free

source # 1
…
…
…

Power System

source # nsource # 2

Secondary

Control

Tertiary

Control

Primary

Control

Transceiver

Secondary

Control

Tertiary

Control

Primary

Control

Transceiver

Secondary

Control

Tertiary

Control

Primary

Control

Transceiver
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plug-and-play experiments

Plug’n’play architecture
recap of detailed signal flow (active power only)

Power system:
physics
& loadflow

}

Diθ̇i =P ∗
i − Pi − Ωi

kiΩ̇i =Diθ̇i−
∑

j ⊆ inverters

aij ·
(

Ωi

Di
− Ωj

Dj

)

Di ∝ 1/αi

Ωiθ̇i

}

}

Primary control:
mimic oscillators
& polyn. symmetry

Tertiary control:
marginal costs
∝ 1 /control gains

Secondary control:
diffusive averaging
of injection ratios

Ωi/Di

θ̇iPi

. . .

. . .

Ωi/Di

. . .

. . .

Ωk/Dk Ωj/Dj

Pi =
∑

j
Bij sin(θi − θj)

62 / 82

Plug’n’play architecture
recap of detailed signal flow (with reactive power)

Power system:
physics
& loadflow

}

Diθ̇i =P ∗
i − Pi − Ωi

kiΩ̇i =Diθ̇i−
∑

j ⊆ inverters

aij ·
(

Ωi

Di
− Ωj

Dj

)

Di ∝ 1/αi

τiĖi =−CiEi(Ei − E∗
i ) − Qi − ei

κiėi =−
∑

j ⊆ inverters

aij ·
(

Qi

Qi

− Qj

Qj

)
−εei

Ωiθ̇i

}

}

Primary control:
mimic oscillators
& polyn. symmetry

Tertiary control:
marginal costs
∝ 1 /control gains

Secondary control:
diffusive averaging
of injection ratios

Ωi/Di

Qi Eiθ̇iPi

eiQi

Qi/Qi

. . .

. . .

Ωi/Di

. . .

. . .

Ωk/Dk

Qk/Qk

Qj/Qj

Ωj/Dj

Pi =
∑

j
Bij sin(θi − θj)

Qi = −
∑

j
BijEiEj

Qj/Qj
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Plug’n’play architecture
experiments also work well in the coupled & lossy case

Power system:
physics
& loadflow

}

Diθ̇i =P ∗
i − Pi − Ωi

kiΩ̇i =Diθ̇i−
∑

j ⊆ inverters

aij ·
(

Ωi

Di
− Ωj

Dj

)

Di ∝ 1/αi

τiĖi =−CiEi(Ei − E∗
i ) − Qi − ei

κiėi =−
∑

j ⊆ inverters

aij ·
(

Qi

Qi

− Qj

Qj

)
−εei

Ωiθ̇i

}

}

Primary control:
mimic oscillators
& polyn. symmetry

Tertiary control:
marginal costs
∝ 1 /control gains

Secondary control:
diffusive averaging
of injection ratios

Ωi/Di

Qi Eiθ̇iPi

eiQi

Qi/Qi

. . .

. . .

Ωi/Di

. . .

. . .

Ωk/Dk

Qk/Qk

Qj/Qj

Ωj/Dj

Pi =
∑

j
BijEiEj sin(θi − θj) + GijEiEj cos(θi − θj)

Qi = −
∑

j
BijEiEjcos(θi − θj) + GijEiEj sin(θi − θj)

Qj/Qj
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Experimental validation of control & opt. algorithms
in collaboration with Q. Shafiee & J.M. Guerrero @ Aalborg University
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Experimental validation of control & opt. algorithms
frequency/voltage regulation & active/reactive load sharing

t = 22s: load # 2

unplugged

t = 36s: load # 2

plugged back

t ∈ [0s, 7s]: primary

& tertiary control

t = 7s: secondary

control activated
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Outline

Introduction

Power Network Modeling

Feasibility, Security, & Stability

Power System Control Hierarchy

Power System Oscillations
Causes for Oscillations
Slow Coherency Modeling
Inter-Area Oscillations & Wide-Area Control

Conclusions
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Electro-Mechanical Oscillations in Power Networks
Dramatic consequences: blackout of August 10, 1996, resulted from
instability of the 0.25 Hz mode in the Western interconnected system
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Source: http://certs.lbl.gov

0.25 Hz
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Causes for Oscillations

Power network swing dynamics

Coarse-grained power network dynamics = generator swing dynamics:

Mi θ̈i + Di θ̇i = Pi −
∑

j
BijEiEj sin(θi − θj)

Swing equations linearized around an equilibrium (θ∗, 0):

M θ̈ + D θ̇ + Lθ = 0

M & D ∈ Rn×n diagonal inertia and damping matrices

L ∈ Rn×n Laplacian matrix with coupling aij = E ∗i E
∗
j Bij cos(θ∗i − θ∗j )

L =




...
. . .

... . .
. ...

−ai1 · · · ∑n
j=1 aij · · · −ain

... . .
. ...

. . .
...




⇒ sparsely coupled harmonic oscillators with heterogeneous frequencies
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Local oscillations and their control

Automatic Voltage Regulator (AVR):

objective: generator voltage = const.

⇒ diminishing damping & sync torque ∂P
∂θ

⇒ can result in oscillatory instability

Power System Stabilizer (PSS):

objective: net damping positive

typical control design:

→ low-pass → wash-out → lead/lag element → gain →

1 ei0B
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amplifier
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Flexible AC Transmission Systems (FACTS) or HVDC:

control by “modulating” transmission line parameters

either connected in series with a line or as shunt device

30 30

67 / 82



Inter-area oscillations in power networks
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RTS 96 power network swing dynamics

Inter-area oscillations are caused by

1 heterogeneity: fast & slow responses (inertia Mi and damping Di )

2 topology: internally strongly and externally sparsely connected areas

3 power transfers between areas: aij = BijE
∗
i E
∗
j cos(θ∗i − θ∗j )

4 interaction of multiple local control loops (e.g., high gain PSSs)
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Taxonomy of electro-mechanical oscillations

Synchronous generator = electromech. oscillator ⇒ local oscillations:

= single generator oscillates relative to the rest of the grid

/ AVR control induces unstable local oscillations

, typically damped by local feedback via Power System Stabilizers

Power system = complex oscillator network ⇒ inter-area oscillations:

= groups of generators oscillate relative to each other

/ poorly tuned local PSSs result in unstable inter-area oscillations

/ inter-area oscillations are only poorly controllable by local feedback

Consequences of recent developments:

/ increasing power transfers outpace capacity of transmission system

⇒ ever more lightly damped electromechanical inter-area oscillations

, technological opportunities for wide-area control (WAC)
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Slow Coherency Modeling

Slow coherency and area aggregation

aggregated RTS 96 model swing dynamics of aggregated model

Aggregate model of lower dimension & with less complexity for

1 analysis and insights into inter-area dynamics [Chow and Kokotovic ’85]

2 measurement-based id of equivalent models [Chakrabortty et.al.’10]

3 remedial action schemes [Xu et. al. ’11] & wide-area control (later today)
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How to find the areas?
classical partitioning ≈ spectral partitioning

1 construct a linear model ẋ = Ax (via, e.g., Power Systems Toolbox)

2 recall solution via eigenvalues λi and left/right eigenvectors wi and vi :

x(t) =
∑

i vie
λi t ·wT

i x0 =
∑

i {mode #i} · {contribution from x0}
3 look at poorly damped complex conjugate mode pairs

4 look at angle & frequency components of eigenvectors

5 group the generators according to their polarity in eigenvectors
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Setup in slow coherency
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original model

aggregated model

r given areas
(from spectral partition [Chow et al. ’85 & ’13])

small sparsity parameter:

δ =
maxα(Σ external connections in area α)

minα(Σ internal connections in area α)

inter-area dynamics by center of inertia:

yα =

∑
i∈αMiθi∑
i∈αMi

, α ∈ {1, . . . , r}

intra-area dynamics by area differences:

zαi−1 = θi − θ1 , i ∈ α \ {1}, α ∈ {1, . . . , r}
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Linear transformation & time-scale separation

Swing equation =⇒ singular perturbation standard form

M θ̈ + D θ̇ + Lθ = 0 =⇒





d
dts




y
ẏ√
δ z√
δ ż


 =




. . .
... . .

.

· · · A · · ·
. .
. ...

. . .







y
ẏ
z
ż




Slow motion given by center of inertia:

yα =

∑
i∈αMiθi∑
i∈αMi

, α ∈ {1, . . . , r}

Fast motion given by intra-area differences:

zαi−1 = θi − θ1 , i ∈ α \ {1}, α ∈ {1, . . . , r}

Slow time scale: ts = δ · t · “max internal area degree”
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Area aggregation & approximation

Singular perturbation
standard form:

Aggregated swing equations
obtained by δ ↓ 0:

d

dts




y
ẏ√
δ z√
δ ż


=




. . .
... . .

.

· · · A · · ·
. .
. ...

. . .







y
ẏ
z
ż




Ma ϕ̈ + Da ϕ̇ + Lred ϕ = 0

Properties of aggregated model [D. Romeres, FD, & F. Bullo, ’13]

1 Ma =



. . . ∑

i∈αMi

. . .


 and Da =



. . . ∑

i∈αDi

. . .




2 Lred = “inter-area Laplacian” + “intra-area contributions”

= positive semidefinite Laplacian with possibly negative weights
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Area aggregation & approximation

Singular perturbation
standard form:

Aggregated swing equations
obtained by δ ↓ 0:

d

dts




y
ẏ√
δ z√
δ ż


=




. . .
... . .

.

· · · A · · ·
. .
. ...

. . .







y
ẏ
z
ż




Ma ϕ̈ + Da ϕ̇ + Lred ϕ = 0

Singular perturbation approximation [D. Romeres, FD, & F. Bullo, ’13]

There exist δ∗ sufficiently small such that for δ ≤ δ∗ and for all t > 0:

[
y(ts)
ẏ(ts)

]
=

[
ϕ(ts)
ϕ̇(ts)

]
+O(

√
δ) ,

[
z(ts)
ż(ts)

]
= Ã

[
ϕ(ts)
ϕ̇(ts)

]
+O(

√
δ) .

center of inertia ≈ solution of aggregated swing equation
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RTS 96 swing dynamics revisited
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Inter-Area Oscillations &
Wide-Area Control

Remedies against electro-mechanical oscillations
conventional control

Blue layer: interconnected generators

Fully decentralized control implemented via PSS, HVDC, or FACTS:

, effective against local oscillations

/ ineffective against inter-area oscillations
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Remedies against electro-mechanical oscillations
wide-area control

Blue layer: interconnected generators

Fully decentralized control

Distributed wide-area control requires identification of sparse control
architecture: actuators, measurements, & communication channels
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Challenges in wide-area control

Objectives: wide-area control should achieve

1 optimal closed-loop performance

2 low control complexity (comm, measurements, & actuation)

Problem: objectives are conflicting

1 design (optimal) centralized control ⇒ identify control architecture

/ complete state info & measurements

/ high communication complexity

2 identify measurements & control architecture ⇒ design control

/ decentralized (optimal) control is hard

/ combinatorial criteria for control channels

Today: simultaneously optimize closed-loop performance

& identify sparse control architecture
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Setup in Wide-Area Control
1 remote control signals & remote measurements (e.g., PMUs)

2 excitation (PSS & AVR) and power electronics (FACTS) actuators

3 communication backbone network

wide-area
controller

power
network

dynamics

generator

transmission 
line 

wide-area 
measurements

(e.g. PMUs)

remote control signals

uwac(t)

uloc(t)

uloc(t)

+

+

+

channel and
measurement 
noise

local control loops

...

system noise

FACTS

PSS & 
AVR

⌘(t)
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Optimal Wide-Area Damping Control

Analysis and Design Trade-Offs for Power Network Inter-Area
Oscillations

Xiaofan Wu, Florian Dörfler, and Mihailo R. Jovanović

Abstract— Conventional analysis and control approaches to
inter-area oscillations in bulk power systems are based on a
modal perspective. Typically, inter-area oscillations are identi-
fied from spatial profiles of poorly damped modes, and they
are damped using carefully tuned decentralized controllers.
To improve upon the limitations of conventional decentralized
strategies, recent efforts aim at distributed wide-area control
which involves the communication of remote signals. Here, we
introduce a novel approach to the analysis and control of inter-
area oscillations. Our framework is based on a stochastically
driven system with performance outputs chosen such that the
H2 norm is associated with incoherent inter-area oscillations.
We show that an analysis of the output covariance matrix offers
new insights relative to modal approaches. Next, we leverage the
recently proposed sparsity-promoting optimal control approach
to design controllers that use relative angle measurements and
simultaneously optimize the closed-loop performance and the
control architecture. For the IEEE 39 New England model, we
investigate performance trade-offs of different control architec-
tures and show that optimal retuning of decentralized control
strategies can effectively guard against inter-areas oscillations.

I. INTRODUCTION

Inter-area oscillations in bulk power systems are associated
with the dynamics of power transfers and involve groups
of synchronous machines oscillating relative to each other.
These system-wide oscillations arise from modular network
topologies (with tightly clustered groups of machines and
sparse interconnections among these clusters), heterogeneous
machine dynamics (resulting in slow and fast responses),
and large inter-area power transfers. As the system loading
increases and renewables are deployed in remote areas, long-
distance power transfers will outpace the addition of new
transmission facilities. As a result, inter-area oscillations
become ever more weakly damped, induce severe stress and
performance limitations on the transmission network, and
may even become unstable and cause outages [1]; see the
1996 Western U.S. blackout [2].

Traditional analysis and control approaches to inter-area
oscillations are based on modal approaches [3], [4]. Typi-
cally, inter-area oscillations are identified from the spatial
profiles of eigenvectors and participation factors of poorly
damped modes [5], [6]. Such oscillations are conventionally

Financial support from the University of Minnesota Initiative for Re-
newable Energy and the Environment under Early Career Award RC-0014-
11 and from University of California, Los Angeles Electrical Engineering
Department start-up funds is gratefully acknowledged.

Xiaofan Wu and Mihailo R. Jovanović are with the Department of Elec-
trical and Computer Engineering, University of Minnesota, Minneapolis,
MN 55455. Emails: [wuxxx836,mihailo]@umn.edu. F. Dörfler is
with the Automatic Control Laboratory at ETH Zürich, Switzerland. Email:
dorfler@control.ee.ethz.ch.

damped via decentralized controllers, whose gains are care-
fully tuned according to root locus criteria [7]–[9].

To improve upon the limitations of decentralized con-
trollers, recent research efforts aim at distributed wide-area
control strategies that involve the communication of remote
signals, see the surveys [10], [11] and the excellent articles
in [12]. The wide-area control signals are typically chosen
to maximize modal observability metrics [13], [14], and the
control design methods range from root locus criteria to
robust and optimal control approaches [15]–[17].

Here, we investigate a novel approach to the analysis and
control of inter-area oscillations. Our unifying analysis and
control framework is based on a stochastically driven power
system model with performance outputs inspired by slow
coherency theory [18], [19]. We analyze inter-area oscilla-
tions by means of the H2 norm of this system, as in recent
related approaches for interconnected oscillator networks and
multi-machine power systems [20]–[22]. We show that an
analysis of power spectral density and variance amplification
offers new insights that complement conventional modal
approaches.

To identify sparse wide-area control architecture and de-
sign optimal controllers, we appeal to the recently proposed
paradigm of sparsity-promoting optimal control [23]–[26].
Sparsity-promoting control approaches have been success-
fully employed for wide-area control in power systems [27]–
[29]. Here, we follow the sparsity-promoting optimal control
framework developed in [30] and find a linear static state
feedback that simultaneously optimizes a standard quadratic
H2 optimal control criterion (associated with incoherent and
poorly damped inter-area oscillations) and induces a sparse
control architecture. Reference [30] augments the approach
developed in [25] by imposing one additional structural
constraint on the distributed controller. This structural con-
straint requires relative angle exchange between different
generators, thereby preserving rotational symmetry of the
original power system.

We investigate different performance indices resulting in
controllers that strike a balance between low communication
complexity and closed-loop performance. We are able to
identify fully decentralized controllers that achieve compa-
rable performance relative to the optimal centralized con-
trollers. Thus, our results also provide a constructive answer
to the much-debated question whether locally observable
oscillations in a power network are also locally controllable;
see [31]. This leads to a potential optimal feedback control
design algorithm for retuning of the decentralized PSS gains
to achieve better wide-area performance. We illustrate the

Talk to conference
attendee Xiaofan
for the details
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there’s a lot more to tell,
but I figured this is enough

for two hours of lecture
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Conclusions

Obviously, there is a lot more . . .

I hope I could give you a little insight into a few interesting problems.
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